Search results for " cancer cachexia"

showing 6 items of 6 documents

Aerobic Exercise and Pharmacological Treatments Counteract Cachexia by Modulating Autophagy in Colon Cancer

2016

Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma (C26)-bearing mice. Voluntary exercise prevented loss of muscle mass and function, ultimately increasing survival of C26-bearing mice. We found that the autophagic flux is overloaded in skeletal muscle of both colon carcinoma murine models and patients, but not in running C26-bearing mice, thus suggesting that exercise may release the auto…

0301 basic medicineCachexiaColorectal cancerMuscle Fibers SkeletalMicevoluntary physical activityChloroquineMice Inbred BALB CMultidisciplinaryMuscle WeaknessMyogenesis3. Good healthmedicine.anatomical_structureColonic NeoplasmsFemalecancer cachexiamedicine.drugmedicine.medical_specialty[SDV.CAN]Life Sciences [q-bio]/Cancerautophagic fluxBiologyArticleCachexia03 medical and health sciencesAtrophyInternal medicineCell Line TumorPhysical Conditioning AnimalmedicineAutophagyAerobic exerciseAnimalsHumansMuscle SkeletalSirolimusrapamycinAutophagyAutophagosomesSkeletal musclemuscle wasting[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyRibonucleotidesmedicine.diseaseAminoimidazole CarboxamideSurvival Analysisexercise mimetics030104 developmental biologyEndocrinology5-amino-1-beta-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)LysosomesNeoplasm Transplantationmuscle wasting; cancer cachexia; voluntary physical activity; exercise mimetics; 5-amino-1-beta-D-ribofuranosyl-imidazole-4-carboxamide (AICAR); rapamycin; autophagic flux
researchProduct

Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations

2019

Cancer cachexia is a multifactorial syndrome characterized by anorexia, body wasting, and muscle and adipose tissue loss, impairing patient's tolerance to anticancer treatments and survival. The aim of the present study was to compare the effects induced in mice by tumor growth alone (C26) or in combination with chemotherapy [C26 oxaliplatin and 5-fluorouracil (oxfu)] and to evaluate the potential of moderate exercise. Oxfu administration to C26 mice exacerbated muscle wasting and triggered autophagy or mitophagy, decreased protein synthesis, and induced mitochondrial alterations. Exercise in C26 oxfu mice counteracted the loss of muscle mass and strength, partially rescuing autophagy and m…

0301 basic medicineMaleCachexiamedicine.medical_treatmentPGC-1αMitochondrionliikuntaBiochemistryMice0302 clinical medicineNeoplasmsMitophagyautophagy; cancer cachexia; mitochondria; PGC-1α; survival; Biotechnology; Biochemistry; Molecular Biology; Geneticsta315WastingMice Inbred BALB C3. Good healthmitochondriaMuscular AtrophyFemalemedicine.symptomBiotechnologycancer cachexiamedicine.medical_specialtyautophagyAntineoplastic AgentsAnorexiasurvivalCachexia03 medical and health sciencesInternal medicinePhysical Conditioning AnimalGeneticsmedicineAnimalsMuscle SkeletalMolecular BiologyChemotherapysyöpähoidotbusiness.industryAutophagyCancermedicine.diseaseta3122030104 developmental biologyEndocrinologyQuality of Lifekoe-eläinmallitbusinessEnergy Metabolismlihassurkastumasairaudet030217 neurology & neurosurgeryFASEB Journal
researchProduct

Role of different endurance training programs on cancer cachexia:pointing particular attention to the gender and age differences Macaluso

2013

Evidence from recent publications indicates that repeated exercise may enhance the quality of life of cancer patients (Maddocks et al., 2012). Regular physical activity may attenuate the adverse effects of cancer therapy, prevent or reverse cachexia and improve survival, although not all the patients are able or willing to undertake programs currently being offered. The aims of this study were to analyze: i) the effects of a progressive endurance exercise (progressive Training, pTR) on survival and cachexia in sedentary (SED) mice inoculated (I) with a fresh fragment of solid C26 tumor [SED-I-pTR; SED-I-SED]; ii) the effect of different protocols of endurance exercise (Trained for 30 min, T…

Endurance Training cancer cachexia
researchProduct

Muscle NAD+ depletion and Serpina3n as molecular determinants of murine cancer cachexia—the effects of blocking myostatin and activins

2020

Objective Cancer cachexia and muscle loss are associated with increased morbidity and mortality. In preclinical animal models, blocking activin receptor (ACVR) ligands has improved survival and prevented muscle wasting in cancer cachexia without an effect on tumour growth. However, the underlying mechanisms are poorly understood. This study aimed to identify cancer cachexia and soluble ACVR (sACVR) administration-evoked changes in muscle proteome. Methods Healthy and C26 tumour-bearing (TB) mice were treated with recombinant sACVR. The sACVR or PBS control were administered either prior to the tumour formation or by continued administration before and after tumour formation. Muscles were an…

MaleEXPRESSIONActivin receptor; APR; C26; Cancer cachexia; Nrk2; OXPHOSlcsh:Internal medicineCachexiaREVERSALActivin ReceptorsMETABOLISMactivin receptorOxidative PhosphorylationCell Line TumorAnimalsMuscle Skeletallcsh:RC31-1245aineenvaihduntaSerpinslihassolut318 Medical biotechnologyNrk2Cancer cachexiaMyostatinNADOXPHOSMUSCULAR-DYSTROPHYActivinsMitochondriaActivin receptorDisease Models AnimalMuscular AtrophyMICESIRTUINSOriginal ArticlesyöpätauditproteiinitC26lihassurkastumasairaudetAPRAcute-Phase Proteinscancer cachexia
researchProduct

Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses.

2018

Background Cancer cachexia increases morbidity and mortality, and blocking of activin receptor ligands has improved survival in experimental cancer. However, the underlying mechanisms have not yet been fully uncovered. Methods The effects of blocking activin receptor type 2 (ACVR2) ligands on both muscle and non‐muscle tissues were investigated in a preclinical model of cancer cachexia using a recombinant soluble ACVR2B (sACVR2B‐Fc). Treatment with sACVR2B‐Fc was applied either only before the tumour formation or with continued treatment both before and after tumour formation. The potential roles of muscle and non‐muscle tissues in cancer cachexia were investigated in order to understand th…

MaleTUMOR-BEARING MICElcsh:Diseases of the musculoskeletal systemCachexiaprotein synthesisActivin Receptors Type IIMDSCphysical activityAcute phase responseKaplan-Meier EstimateACTIVATIONActivinMiceNeoplasmsOrthopedics and Sports MedicineTOR Serine-Threonine Kinasesactivinlcsh:Human anatomyII RECEPTORSRecombinant ProteinsProtein TransportLivermyostatinPROTEIN-SYNTHESISSKELETAL-MUSCLECytokinessyöpätauditInflammation MediatorsACUTE-PHASE RESPONSE3122 CancersINHIBITIONlcsh:QM1-695acute phase responsePhysiology (medical)Cell Line TumorAnimalsHumansMuscle SkeletalActivin; Acute phase response; MDSC; Myostatin; Physical activity; Protein synthesis; Orthopedics and Sports Medicine; Physiology (medical)Physical activityMyeloid-Derived Suppressor CellsMyostatinXenograft Model Antitumor AssaysDisease Models AnimalACTIVIN-APHYSICAL-ACTIVITY3121 General medicine internal medicine and other clinical medicineproteiinitEXPERIMENTAL CANCER CACHEXIAlcsh:RC925-935Protein synthesislihassurkastumasairaudetBiomarkersSpleenJournal of cachexia, sarcopenia and muscle
researchProduct

Targeting the Activin Receptor Signaling to Counteract the Multi-Systemic Complications of Cancer and Its Treatments

2021

Muscle wasting, i.e., cachexia, frequently occurs in cancer and associates with poor prognosis and increased morbidity and mortality. Anticancer treatments have also been shown to contribute to sustainment or exacerbation of cachexia, thus affecting quality of life and overall survival in cancer patients. Pre-clinical studies have shown that blocking activin receptor type 2 (ACVR2) or its ligands and their downstream signaling can preserve muscle mass in rodents bearing experimental cancers, as well as in chemotherapy-treated animals. In tumor-bearing mice, the prevention of skeletal and respiratory muscle wasting was also associated with improved survival. However, the definitive proof tha…

tumorCachexiaActivin ReceptorsActivin Receptors Type IIMyostatinReviewchemotherapymulti-organType IIsurvivalCachexiaNeoplasmsmedicineRespiratory muscleHumansActivins; Cancer cachexia; Chemotherapy; Mortality; Multi-organ; Muscle wasting; Myostatin; Survival; Tumor; Activin Receptors Type II; Cachexia; Humans; Neoplasms; Signal Transduction; Survival Analysislcsh:QH301-705.5Wastingsoluviestintäbiologysyöpähoidotbusiness.industryactivinsCancerSkeletal musclemuscle wastingGeneral MedicineActivin receptormedicine.diseaseSurvival AnalysismortalityBlockademedicine.anatomical_structurelcsh:Biology (General)myostatinCancer researchbiology.proteinproteiinitmedicine.symptombusinesshenkiinjääminenlihassurkastumasairaudetSignal Transductioncancer cachexia
researchProduct